
NASA-CR-194.779

P- _.,_ E) I;.n o'_

"_ ornO_

r_ l) m I

_-_ ;Q o I
,o "n_ --_

P,-i oqD

Q ;_ r- "T
0 _ _m

-.0
D "_ _m
-, ¢._ m -,I

C r-

@ @

I

0

0 E Z
N :3 _0
0 _ ._
I-_ -.' I

o .t-
o;
_n

DEPARTMENT OF MATHEMATICS & STATISTICS

COLLEGE OF SCIENCES

OLD DOMINION UNIVERSITY

NORFOLK, VIRGINIA 23529

THEORETICAL STUDIES OF A MOLECULAR BEAM

GENERATOR

By

John Heinbockel, Principal Investigator

Progress Report

For the period July 1, 1993 to December 31, 1993

Prepared for the

National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23681-0001

Under

Research Grant NAG-l-1424

Dr. Sang H. Choi, Technical Monitor

SSD-High Energy Science Branch

/,

/j J

@

Submitted by the

Old Dominion University Research Foundation
P. O. Box 6369

Norfolk, Virginia 23508

January 1994



Progress Report

NASA Research Grant NAG-l-1424

ODU Research Foundation Grant Number 126612

THEORETICAL STUDIES OF A MOLECULAR BEAM GENERATOR

Introduction

At present no adequate computer code exists for predicting the effects of thermal

nonequilibrium on the flow quality of a converging-diverging N2 nozzle. It is the purpose

of this research to develop such a code and then perform parametric studies to determine

the effects of intermolecular forces (high gas pressure) and thermal nonequilibrium (the

splitting of temperature into a vibrational and rotational-translational excitation) upon

the flow quality.

The two models to be compared are given below. See Appendix A for nomenclature

and additional relationships.

Model 1 (Equilibrium Model)

Continuity Equation

Momentum Equations

Dp
D-7+ pV. ¢ = 0 (1)

D_ 7

P--ffi- = p_r + V . (aij) (2)

Energy Equation

aet

Ot

aq
-- + v. (_,f) - at re+ pg'._ + v. ("_s•v) (3)

Equation of State

P = (_- 1)pe,, Cp _R

_:E' c'-_-i (4)



Model 2 (Nonequilibrium Model)

Continuity Equation

Dp
--+pV._ =o
Dt

(5)

Momentum Equations

De
P-b-F= pC+ v. (,,q) (6)

Energy Equations

a¢, aQ v .¢,,+ v . (oq . P) - pc._xa-T+ v . (_,'_) = a--f-
aeu
a_ + v. (_,?) =- v .¢, + pc,,x

(7)

The above equations express the compressible Navier Stokes equations which govern

the basic dynamics of compressible fluid motion. In these equations we will assume that

there are no body forces b"= O, and there are no external heat sources Q = o. In the above

models the following relations hold

et = er + eu, er = pCurtT + pV2/2, eu = pCuuTv

5_R hv
C. = C.rt + C_lT=n, C_., = 2 ' ¢ = --ff

-- -- exp exp - 1
-- m

G, = -K,tVT G = -K,_VT,,

19_?k

K = Kv + K,t, Kv = T1C,,,,, Krt - 4m ' _ -

clgcT3/2

T+c2

I [(1X- _-_ 1 - e-¢/r exp ¢ Tv

a.12(lo,1) 2/z 3.12(,o') ,/3

P(atm)r =
(1 + erf(_))sinh( ,6gs_T J

(8)

(9)

(10)

(Ii)

(12)

(13)

(14)

(15)
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where ,7 is the viscosity given by Sutherland formula with

5
el -" 2.16(10 -s) * 1.488, e2 = 184.0, and gc = =Rfor N2.

Z

Conservative Equations

The continuity equation and energy equation are examples of scalar conservation laws

which have the general form
0a

0-7+ v. _'= 0 (16)

where a is a scalar and b' is a vector. In Cartesian coordinates we have for the continuity

equation

(_ = p and b : pVzel -}-pVye2 -}-pVzez (17)

and for the energy equation we have a = et and

where

(et + P)V1 -

(e_+ p)v2 -

_, + P)V_-

3 ]Virzi -I- q= ex-+-
i=1

3

E V/ryi + qY e2+
i=1

3

Z Vir, i + qz e3
i=1

(18)

_,=., + .(v? + v: + v_)/2.

In general orthogonal coordinates (z_, x2, x3) the equation (16) is written in the form

0 0 0 ,9

O-t((hlh2h3a)) + -_zl((h'h3bl)) + -ff-_x_((hlh3b2)) + _x3 ((h,h2b3)) =O. (19)

where hi, h2,h3 are the scale factors obtained from the transformation equations to the

general orthogonal coordinates.

The momentum equations are examples of a vector conservation law having the general

form

O-t + V. (T) -- 0 (20)

where g is a vector and T is a symmetric tensor

3 3

T : Z E Tjk_'_k. (21)

k=l j=l
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In general coordinates wehave for the momentum equations

= pl7 and Tii = pViV i + P6iy - rq.

In general orthogonal coordinates (xl,x2, zs) the conservation law (19) can be written

a 0 £ £-_((hlh2hs_) + 0-_xl ((h2hsT "el)) + ((hlhaT "e2)) + ((hlh2T "e3)) = 0 (22)

Example 1 Cartesian Coordinates

In Cartesian coordinates the model 1 can be written in the strong conservative form

BU OE OF OG

cg---t+ _ + _ + Oz -- 0 (23)

where

U

'1p_
pV_[
pV. /

¢t J

(24)

pV_ + P - rzz

E = pvzv,,-_,_, (2s)
p Vz Vz -- rzz

(et + P)Vz - Vxrzx - V_rzy - Vzrzz + qz

pV_V_ - r_y
pV_ + P - ruy

pVzVz - ruz

(e,+ P)V u - Vzr_x - Vyryy - Vzr_z + qu

pv_
rhoV_V_- r_
pV_V. - %z

PVz2 + P - rzz

(_ + P)V_ - v_r= - v_r_y - v_rz_+ q_

F = (26)

G =

where the shear stresses are given by

(27)

nj = _(y_,j + vj,_)+ &jAVk,k

for i,j,k = 1,2,3.



Example 2 Cylindrical Coordinates

The transformation equations to cylindrical coordinates are given by

X = rcosO

y = rsinO

Z=Z

and have unit basis vectors

el = er "- cos _1 -_- sin _2

_2 = Sr = - sin 0"61 + cos 0"62

e3 = ez : 3

and scale factors hi = 1, h2 = r, h3 = 1. Consequently, the continuity equation can be

expressed

O(rpVr) a(pVo) O(rpV,)a.pr___.+ + _ + - o (28)
Ot Or O0 Oz

and the energy equation has the form

Ot

a

Or ((r{(et + P)V_ - V,r,_ - Vor, o - V.r,. + qr]))+

00--_((r[(et + P)Vo - Vrro, - Voroo - Vzro, + q0]))+

O

_zz((r[(et+ P)V. - Vrr.r - Vorzo - Vzrzz + qz])) = 0

(29)

The momentum equations have the form

-_((_pV_))+ ((fT.)) + ((Tro))- Too+ ((rT,,))=o

O O O O--_((rpVo))+-_r((rTor))+T_o+-_(Too)+ ((rT0z)) = 0

((rpV,)) + _r ((rT_z)) + -_(T,o) + ((rT, z)) =0.

(3o)
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For symmetry with respect to the 0 variable we set all derivative terms with respect

to theta equal to zero and consider only momentum in the r and z directions. Under these

conditions the only stresses to consider are given by

r,,, = r,, = rt \ Or + Oz ]

(31)

and the above momentum equations reduce to

((rpVr)) + "_r((r[pVr2 + P-rrr])) - P +ree+ ((r[pVrVz-r,.])) =O

((,pV,))+ (,[pV,V, - ,,,])) + + P - ,-..]))= O.
(32)

Method of Solution

In cylindrical coordinates, both the models 1 and 2 can be written in the weak con-

servative form
OU OE I OF I

0--T + _ + -_z + H = O. (33)

The nozzle boundary is described by some defining equation r* = f(z), 0 < z <_ b and

therefore we can introduce the transformation equations

Z

X = m

b
r r (34)

y --

r" f(xb)

The computational domain then becomes the x, y domain where 0 < x < 1 and 0 < y < 1

and the weak conservative form given by equation (33) can be written in the form

OU OE OF

+ -_x + _ + g = 0 (35)a---_- oy

where

OE c_F I 1 OF OE I 1 byff aF I
- and --

Ox Ox b i)y Oy f f Oy

and all other derivative terms, such as in the stresses, are converted to z,y derivatives by

the chain rule.
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Usingoperator slitting we can break the vector equation (35) into a sequence of single

vector equations which can be used to define the solution. Define the operator Lz as

defining the solution to the vector problem

aU aE

a-T + ax o.

Thus, Lz can be defined by the two step predictor-corrector formula

-- At E* *
predictor: U_ =U_* d _x( i+1,i - El,y)

• . 1.U. -- At.
corrector: U_,1 =_[ i,y -4- U_,; _x(Ei,i - E_-_*I,/) l

where U_*,; = LzUi* J.

Similarly, we can define an operator Ly as the solution of the vector equation

OU OF
--+ -0
Ot Oy

-- At. ,

V/*,; --Vi: 3. _y (ri.+.l, 3. - El:3. )

where L u is defined as

predictor:

., 1.U. -- At (F_- Fi*_--_l,/)]
corrector: U_, i =_[ i,y + U_; Ay

where U_,; = LyxU_*,i.

Finally, we define the operator L as the solution of the vector equation

OU
--+H=0
Ot

where L is defined by the modified Euler method or second order Runge-Kutta method

predictor: U/_ = - AtHi*,i

** . At ,
corrector: V_,j = - V,i _ (Hi,j + H_,_.)

whereV;,;= LVi',3'"

We can then define the following sequence of numerical calcuations

U.n+ 2 = LxLuLLLuL x U .n.
t,J I,,3 "

That is we select a At which satisfies the CFL stability condition

(36)

-I

(At)cFL < -t- 3 t- C (Ax)----_ 3 t- (Ay)----_

and c = _ is the local

calculations:

speed of sound, and then perform the following sequence of



Step 1: Solve the system U_j = Lx U_j.

Step 2: Solve the system U_i = L u U_j.

Step 3: Solve the system U_y = LUCy.

Step 4: Solve the system U4y = LUCy.

Step 5: Solve the system U_y = L u U4y.

Step 6: Solve the system U.n+2 = Lz U .5-
$,_ 1_3 •

Then redefine Uni,i, go to step 1 and repeat the calculations until the values U.n.,,Jstop

changing. This then represents the steady state solution.

After calculating the vector

u!steady state) = (rp, rpVr rpVz, ret)
1,3

we can calcualte for all i, j values the quantities

v(1),,s
Pi,i --

ri

Vr_,¢ -
riPi,j

U(3)i,j
V_i,i -

ri Pi,i

and since

v, v:f,s)/2U(4)Li = rieti,i = riPi,ieiJ + riPLi( ri,i +

we can determine the internal energy eii and hence the temperature Tii. In the model 2,

two temperatures are determined since U will have dimension 5.

Initial and Boundary Conditions

We consider a one dimensional nozzle flow where the velocity Vz of the gas at any

cross section is averaged over all cross sectional values. Let A = A(z) denote the cross

sectional area of the nozzle. We assume that the mass flow rate across any nozzle section

is a constant and

Qo = pV_A = Constant,

so that we obtain using Iogaritmic derivatives that

dVz dAdp q- +----0.
p A

For isentropic gas flow we let H denote the enthalpy and use the Bernoulli theorem that

2
-- + H = H0 = Constant,



together with the relations

pv "_= Constant, v = l/p, et = CvT - ' pv _lZV
"7-1' H = et + pv - ,.l_ l.

We can then write

and use

to obtain

Using

dp dp dp

p dp p

dpdp= (_p) s = c 2, pdp _- dH = -VzdVz

dp dV_ 1
-- + -- (-VzdVz) +
p V_ c2

dr, dV,: dA
V z -V z \1- C2] A

P Po

pl/-_ p_/.y

where Po and Po are the density and pressure while the gas is at rest, we write the enthalpy

a_

"7--1p _--I \ PO /

Then the mass rate of flow Qo/A = pVz becomes a function of pressure given by

()(p_0) 1/2
p 1/., 2-y p_o[l_(

pVz = p[2(Ho - H)] 1/2 = Po _o (_/= 1) Po (15)

From this relation we can plot pVz vs p/po. Note that pVz = 0 when p/po = 1 (gas at rest)

and p/po = 0 when gas expands into a vacuum. The maximum mass density occurs where

= 0. This occurs at the throat where Vz = c. Since A(z) is known, we can assume
dp

an initial value for Q0 and then determine two pressures from equation (15) which can be

plotted as a function of z. We adjust Q0 until the two roots are equal at the throat. At this

value of Qo we can the determine the exit (plenum) pressure pp. If the exit pressure is any

value greater than this critical value then shock waves can result and the flow could march

backwards into the nozzle. We use the above analysis to determine starting entrance and

exit pressures.



Our initial conditions are

At Entrance

The temperature, pressure (density), and initial velocities are specified according mass

flow considerations. The radial velocity is selected in order that the radial velocity in the

computational coordinates is initially zero. This requires that

vi.. yf'(0)
V,,o= V'.o=

V/1 + (yf'(O))2 _¢/i+ (yf'(O))2

The temperature is initially set to a constant plenum temperature at all interior grid

points. The plenum pressure is assumed constant at all interior grid points and the radial

and axial velocities are set to zero.

Boundary Conditions

At the entrance Cleft boundary) the temperature, pressure and velocities are held

constant. At the exit (right boundary) the pressure is held as the plenum pressure and the

temperature and velocities are determined by extrapolation. Along the outside boundary of

the nozzle the velocities are maintained as zero (no slip boundary condition) and the normal

pressure and temperatures are maintained as zero. Along the centerline the radial velocity

is zero while the temperature, axial velocity and density are determined by extrapolation.

10



APPENDIX A

List of Symbols

Curt

C,,

Cur

Did

D

Dt

et

= Body force vector per unit mass [Newtons/Kg]

= Specific heat at constant volume for rotation-translation [Joule/Kg K]

= Specific heat at constant volume [Joule/Kg K]

= Specific heat at constant volume for vibration [Joule/Kg K]

= Rate of deformation tensor Is -1]

_ c9 + 17 • V Material of substantial derivative
Ot

= Total energy [Joule/m 3 s]

k

m

4'=

P=

Ro=

R=

e, er,ev Internal energies [Joule/m 3 s]

h = Plank's constant [J s]

hx,hz,h3 Scale factors

= Boltzmann's constant [J/K]

W

= N---_ Molecular mass [Kg]

= Avogadro's number [tool- 1]

Heat input due to rotation and translational energy [Joule/m 3 s]

Heat input due to vibrational energy [Joule/m z s]

qrt + qv = Total heat energy [Joule/rn 3 s]

Pressure [Newton /m 2]

Universal gas constant [Joule/Kmole]

Ro/W = Gas constant [goule/gg g]

11



List of Symbols

t = time Is]

T, Tv = Temperatures [K]

17 = Velocity [m/s]

W = Molecular weight of N2 [gg/mole]

17 = Viscosity coefficient [Kg/m s]

= Second coefficient of viscosity [Kg/rn s]

grt- Thermal conductivity (rotation & translation)[W/rn g]

Kv = Thermal conductivity (vibration)[W/ms]

p = Density [gg/m 3]

r = Relaxation time [s]

ri_- = Stresses [gewton/rn 2]

¢ = Characteristic vibration [K]

x,y Computational coordinates

Lz,Ly, L Operators

12



APPENDIX B

NOZZLE GEOMETRY

The nozzle geometry isillustratedin the Figure 1 where alldimensions are in millimeters.

5.0

al a2 a3

Figure 1. Nozzle Geometry
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The throat radius is a0 = 0.5ram, and the nozzle length is 350.0ram. The left end

opening is 5.0ram. Starting at the point (0, 5) on the left boundary, we move downward

on a straight line having a slope of -v/3. This line intersects a circle of radius 2.0ram

centered at (a2,2.5mm) where the point a2 is at the throat and is selected so that the

slope of the line and the slope of the circle are the same at the point of intersection z = al.

A point a3 > a2 is selected inorder that a cubic spline can convert the circle into a straight

line with slope of tan 8 °. We write the equation of the circle as

The equation of the line is

(r-(a0+R)) 2+(z-a2) 2 =R 2.

r - 5 = -(tan 60°)z.

At z = a2 we require the slope of the circle to be zero, and at the point al we require that

the point (al, rl) lie on the circle and further the slope of the circle equals the slope of the

line. Solving the resulting equations we find that al - a2 = -V_,

al= 5-(aO+R-v/-_y-3) and a2=(8-(aO+R-1))/v/3.
v_

For a2 < z < a3 we must find the parameter a3 such that a cubic spline converts the circle

to a straight line. The cubic spline is represented

r=S3(z) =A(z-a2) 3+B(z-a2) 2+C(z-a2)+D a2_<z_<a3

and is subject to the end conditions that

S3(a2)=aO, S_(a2)=0, S_'(a2)=I/R S_(a3)=tan8 ° S_(a3)=0.

We find that
-1 1

A= B=--
12R 2tan8 °, 2R'

The equation of the nozzle is then given by

O < z <_ al,

al <_ z <_ a2,

a2 < z <_ a3,

a3 <_ z <_ a4,

where

C=0, D=aO.

r = f(z) = -v/3(z - a2)+ (aO+ R - _ - 3 - 3)

r = f(z) = aO+ R - x/R2 - (z - a2)2

r = fCz)= S3Cz)

r = f(z) = a4 + tan8°(z- a3)

a4= $3(a3) and a3=a2+2Rtan8 ° .
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